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ABSTRACT | (,)9,9

An analysis of non-adiasbatic pert\n-ﬁationa in a sequence
.0f quasi-static general rela.t_ivistic stellar models is used to
prove that under certain assumptions about the entropy dist_ribu- B
tion a maximum or minimum in the binding energy implies same
radial mode of oscillation is in neutral equilibrium. Also dis-‘
cussed is the derivation of a test for stability of radial modes

of oscillation by ccnsidering virtual changes in the total energy

under adiabatic perturbations. S 4 (///AJ 's
i N ? N .
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I, INTRODUCTION,

Ceneral relativistic equilibrium mcdels of gas spheres have been
calculated by several authors for various equations of state. We mention
here the recent work of Iben (1963), Tooper (1964a,b), and Taub (1965).

A given model is characterized by several parameters, such as the total

" energy M, the total baryon mass or "res§ mass” M » the central baryon or
"rest mass" density (Zl./V)c , the central ratio of pressure to "rest mass”
density (1='V)c (proportional to the temperature for an ideal gas), and
the value of the "gravitatidnal potential” 2M/R at the surface. To
completely specify a model, given the equation of state of the matter, it
is necessai'y to know the values of two of the above parameters, say‘Mo and
(1/v)c, and also the distribution of entropy as a function of radius.

At zero temperature (degenerate matter) there is only one indepen-
" dent parameter, which may be taken to be M. Models of this sort have
been considered by Wheeler (1963), Misner and Zapolsky (1964), and Harrison
(1965). At non-zerd temperatures a one-parameter sequence of models may
be constructed by letting the central density vary monotonically but
keeping the number of baryons (or Mo) constant and at each central density
choosing an entropy distribution. Slich a sequence ‘might correspond to a
mass undergoing a generalized Kelvin-Helmholtz contraction in quasi-static
equilibrium in which increase as well as decrease of the total energy is
allowed. One finds that the total energy, or equivalently the binding
energy, has a number of maxima and minima as a function of central density.

The stability of equilibrium models in general relativity has been
discussed by Chendrasekhar (1964a,b) in teﬁ of a normal mode analysis of

radial oscillations. Chandrasekhar's stability criterion has been applied



to a series of isentropic models, assuming a gas-plus-radiation pressure
equation of state, by Tooper (1964b) with the numerical result that the

mass becomes unstable at the first maximum of the binding energy. Fowler
(1964) and Wright (1964) have shown this analytically in the post-Newtonian
© approximation. The main purpose of this paper ia to show that for any
equation of ‘state a sequence of general re]ativiétic equilibrium models

with constant number of baryons and constant non-thermal or "rest mass"
energy per baryon at each mass element has the property that at a stationary
point in the bipding energr'aa a function of central density one and only
one radial mode of oscillation has eigenfrequency a)2 = 0, if the change

in specific entropy from one model to the next has the same sign at every
mags element. The condition on the-entropy change is satisfied, for example,
if each model is isentropic, so the specific entropy has the same value at
every mass point in a given model.

The last part of the paper is devoted to an analysis of the stability
of an equilibrium model in terms of virtual changes of the total energy
under adiabatic perturbations, extending to general relativity the work of
Dyson (1961). The interesting point is that the correct stability integral
is obﬁhﬁ only if the virtual changes in the energy are summed at infinity
as if they had arrived there by some process of thermal diffusion and

radiation.

II. DEFINITIONS.,
Our metric, in coordinates such that the baryon number inside a given

r is independent of time and units such that G = c = 1, is

-2 .2

- pe? - ¥2a?-x2a®-RPad® . (1)
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~ The components of the energy-momentum tensor are taken to be

b 1 2 3
T, =E= (avi)/v, T," = T, =T,

= -P, (Y/X) Tkl = K. The specific
volume V is conveniently normalized so the non-thermal energy per unit
"mass", A, is equal or close to one. If any nuclear reactions are taking
place, A will be a function of time. W is the thermodynamic internal
energy per unit “mass”. The Justification for splitting E in this way is
that except at extremely high temperatures or densities, the atomic compo-
sition of the matter is not in local thermodynamic equilibrium. Thus,
nuclear mass and binding enérgies must be excluded from the thermal energy
if simple thermodynamics is to be used, The energy flux K is introduced
in order to be able to consider the transformation of one model in a
sequence to another, and might in particular be due to thermal diffusiom.
The particular mechanism of energy loss is unimportant because even if it
does involve non-thermal contribujbions to E and P, these will be negli-
gible compared to the thermal e.;nergies and preséures and even negligible
in their effects compared to K, in quasi-static models. |

The quantity 1/V is an "invariant mass" density tied to the baryon
density, and the total emount of "invariant mass" inside a given radius
will be denoted by Mo ’

2 ' ,
-‘i"v-xg— ar - (2)

=
.
O K

Mo is & function only of r, and one may choose r = M . The most convenient
definition of a "binding energy" for my purposes is as M -M, where M is the
' total energy. The true binding energy is [ AdM_ - M, but since the rela-

tion of binding energy to stability holde only if no nuclear reactions are
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taking place and in this case V can be chosen so A = 1 through the whole
star, the difference is unimportant.
The only way the total energy MI‘ of the mass can change is through

the flux K, since

M = - kx PRZR - bx R® X2/Y (3)

&

and P = O at the surface of the mass. 2Z = R'X = (l+02-2M/R)1/2, and
U = YR. Let
NII( a5 - lH‘( R KZ/Y . T

The u’ Tv“." w = 0 equation may be written as

E]

A+ W+ PV =-Y 83. %tziK . (s)
: o
If S is the specific entropy and T the temperature, by thermodynamics
W+ P = T8 . (6)
Then (5) becomes
A+Té-é=%yz-£;(%—) . (1)

Q is the rate at which energy as measured by a local observer is added to
& mass element per unit invariant mass. The significance of (7) becoumes
clearer when it is compared with the integral for M; neglecting explicit

time derivatives in the spir’: of a quasi-static approximation,

Moo= [ (AW) Z QM . (8)
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In & quasi-static model Z = \/l-aM/R, and (A+W)Z is the rest mass,

thermal, and gravitational potential energy per wnit invariant mass of a
mass element., Over a small time interval b5t, dQ = ('), 5t is the non-adiabatic
change in the internal energy per unit Mo and 5QZ is the net non-adiabatic
change in "local" energy, which includes the potential energy, per unit M.
Equation (7) ‘gives the non-adiabatic chenge in the total energy inside r,
5MK 513 s &8s
BMK ﬂ@— aM . (9)
The nQn-a.diaba.‘cic change in locel energy at a radius 1 is red-shifted by
the amount (YZ) 2/(srz) . 1in its contribution to the non-adisbatic change of

the total energy inside a larger radius 2.

III. PROOF AND DISCUSSION OF THEOREM.

The equilibrium equation, in a form convenient for msking perturba-

tions, is

-2 ZP+§) - MRS -LxBR= 0 = 0 . (20)

To first order in &R, with r = R of the initial model,

BM = -thR25R+5MK | s (11)

52/ = - %— 8R - oM /(Z°R) , (12)

SV/V = —% (8% 6R)' - 52/z L, (13)
| R



5V 7
8¢ = -r, P & 4+ (r, -1) B2 , (14)
5[(143){] = BQ + VoP | . (18)

(14) and (15) are the result of thermodynamics, and

I AT-) :
. Pl = - -f (‘_f) o (16) ‘
S
v ,oT '
I"2 -1 = - T (B:\-f)s . (17)

The quantity Y'/Y = P'/(P+E) evaluated for the initial equilibrium model.
The hydrodynamic equations behind (10) - (13) are discussed by Misner and.
Sharp (1964, 1965),

A sinusoidal, adiabatic pertﬁrﬁation'with 8R(r,t) = BR(x) 1%

and BA = 85 = O for all r gives the equation

o (0 ag| |k oy ool Ry e B (mE)
@ |43, a8 9 Y I 7Y 9 2| 43, o2
2 2
w- (P+E) R P+ E 18
=79 3 2 8= 3 3.5 % ’ (18)
vz2 o® Y° 20 R’

in which g = ROY 8R(r), O = Rs/ 3, and B0 1is the first order variation
of (10). (18) with boundary conditions g/Q finite at R =0 and g
finite at P = O is not quite a standard Sturm-Liouville problem, but as
discussed by Ledoux and Walraven (1958) for the Newtonian case , the eigen-
values and eigenfunctions have -ﬁhe same properties.

Now consider two neighboring mgdels in some continuous sequence with

. the same number of baryons, or the same Mo. One can define a displacement
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8R(r) YDetween equivalent points in the two models, equivalent points having
the same total baryon number inside them. Both models satisfy equation (10)
and thus in the limit that the models converge, or that B&R(r) = 0, the
difference between the left-hand sides of (10) for the two models, expanded
to fi:;st order in 8R, must vanish. That is, 0 for one of the models, under
a perturbatfon having the shape of OR(r) in this limit, must vanishn.

In order to comnect up this result with equation (18), the perturba-
tion must be an adigbatic one. From equation (9) and the fact that BM = M,
at the surface of the mass ,.we see that the difference of total enexrgies of
two adjacent models, or equivalently the difference of the binding energies,

is given to first order by

8y, = (¥z), Z 89 gy : . (19)

T is the value of r at the surface. At a maximum or minimum in the binding
energy, BMT is zero., If BQ has the same sign at every mass element, this 1is
only possible if 5Q is zero at every mass element. One case in which
5Q = BA + TOS does have the same sign everywhere is if BA is zeéro (mo
nuclear reactions) and if the models are isentropic, so for any pair of
models &S bhas a constant value throughout the mass. The fact, then, that
5Q and &S are zero at every mass element means that 8MK is zero at every
mass element and 5P is adiabatic. Furthermore, it is clear from equations
(11) - (15) that all the perturbations are adiabatic in the strict sense
needed to apply (18).

If the displacement between the two neighboring models is completely
adiabatic, then the functi§n dR(r) is an eigenfunction of (18) with eigen-

value a)2 = O. This means some radisl mode of oscillation is in neutral
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ecuilibrium at a stationary point in the binding energy as a function of

central density for a series of isentropic models. -

Calculations with equation of state

o | |
Vo= -1 ) (20)

', a constant independent of V and P, show that if T, > 4/3, as the central
density increases the binding energy increases to a maximum at which the
fundamental mode becomes unstable, decreases to a minimum at which the first
harmonic becomes unstable, and continues in rapidly damped oscillations with
successively higher modes becoming unstable.

The fact that displacements between neighboring models take on the
shape of & given radial mode of oscillation near the point where it becomes
unstable is reflected in how the radius of the mass changes along the
sequence of models, oscillating out of phase with the binding energy. As
the central demsity increases, the radius decreases at the instability point
of an even mode (even number of nodes) and increases at the instability point
of an odd mode. If the binding energy is plotted against the value of 2M/R
at the surface for the above models, the curve is a lop-sided spiral which
rapidly converges to a limiting model when PV >> 1, as is shown in Figure 1
for the case Pl =2,

The above behavior, I expect, is typical as long as I‘l does not
increase sharply with density, which may cause an unstable mode to become
stable again. In this event, if just the fundamental was unstable, the
binding energy will have a minimum when the fundamental becomes stable and

a maximum when it becomes unstable again. In the plot against- 2M/R , vhe

curve wiil oscillate once before entering the spiral.



The requirement of lsentropy may be relaxed soxﬁewhat without affec-
ting the validity of the theorem as long as it is not poésible for the
entropy to ir}crease in part of the mass and decrease in another part such
that 8MT is zerxo. rHowever‘ , the condition B8A = O would seem to be a
necessary condition for the stability to have a.nj'bhing to do with the
binding energy.

The converse to the above theorem, that the marginal instability of
a radial mode of oscillation of a model implies a maximum or minimum in tﬁe
binding energy, is not true. All that one can say is that there exist
sequences of models containing this particular model which are stationary
in the binding energy at this model. There also exist sequences in which
at the instebility of the fundamental mode, say, the binding emergy is still
increasing as the central density increases. In the latter type of sequence,
the subsequent maximum in the binding energy is not associated with the
instability of any mode of oscillation.

Of course, only the instability of the fundamental mode is of direct
physical interest, ‘since unstable equilibrium models cannot be realized in

nature.

IV. VIRTUAL CHANGE IN TOTAL ENERGY.
A test for the stability of a mass may be Obtained from equation (18)

in the form of the integral

| I.P 2 3] 2
P+R a b RY' 1 Ry PR
] aa Y;: fr @ * [’9‘ Ta-; PF z‘?} @ | - ()

If, for all functions g(R). satisfying the boundary conditions g/@ finite

at R = O and g finite when P = O, the integral (21) is greater than zero,
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the mass is stable; if for any such g the integral is less than zero the
mass is unstable. In addition, for a mass in neutral equilibrium, the
difference of (21) fi'om zero is second order :I.n‘the deviation of g from
the eigenfunction of the fundamental mode. -

To see how the integral ‘(21) and a v*ariational tést for ataﬁility :
may be obtaihed from the virtual chahge in the total energy of the mass,
5 M, under a virtual adisbatic displacement, consider the integral (8),
with V normalized so A = 1, M, is constant under the variations and to

second order in SR

5 M = J 5,WZ + (1+W) 5,2 +B,WZ+ 3 W 5,2 + (1+W) 5221 aM . (22)

The second-order variations in (22) are evaluated by expanding the change

in a quantity as

ot 1 [P 2
8f = 5,f +8,f = (B‘ﬁ) s R + 3 2 (5R) .
T Ir,S
1/2
Z is taken equal to (1-2M/R) in the variations, and
2 2 5V ; :
52M=-1m1>a(63) +2xT) PR"BR 5 . (23)
The second-order variation in W is
1 8 v |2
53 = =P8V += I P |~—=— ; (24)

2 2 2 "1 v

52V i 1s evaluated from

z’aav +8z_ 5V + Vo2 = a%; [lm 3(53)2] . (25)
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The result is that the integrand of (22) can be written in the form

‘ T.P
a_ 1 aa e, 4 (3 dg|
5B1+w)z] a am 5 M +52M] 5 an YZ |- & 35 [ - dﬂ]

{% SN lﬂ ﬁigzz 1 - @8

BlM and 62M are the first and second order actual, as Opposed

to virtual, adiabatic changes in M at a given mass point and are zero at

the limits of integratiom. The first term in (26) 1is the actual adisvatic
change of (1+W)Z in the perturbation. The second term is the virtual
.c'na.nge in (1+W)3Z, 5vl[(l+W)Z , and is second order in 8R. From the fact
that (18) is essentially a Sturm-Liouville probiem , the eigenfunctions
gi(n) of the radial modes of oscillation are orthogonal with respect.to

the weight function (P+E)R%/Yz® a°

.. The extra factor of YZ in av[(l-;-w)z]
means that the integral (22) does not have the property that it is positive
definite for all stable models. This is because (22) contains terms first
order in the deviation of g from the eigenfunction of a ;-adial mode of
oscillation. The proper Sturm-Liouville integrai (21)_ is, within a con-
stant factor,
av[(hw)z]
YZ - o
The interesting point is the similarity with the integral (9). The
corréct evaluation of the virtual change in the total energy seems to be

' ' r 14W
M = (YZ)G ? M aM S (27)
o. ‘ ‘

YZ (4]
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instead of (22). This suggests the interpretation that it is the sum of
the virtual changes in energy after they are carried to infinity, including
the gravitational red shifts éssociated with this, that properly determines
the stability of a mass. Or alternatively one might say that the virtual
change in the local energy, 5, [(1+W)Z] , being a non-adiabatic change, has
an effect oh the toftal energy in the same way as & non—adia.batic {thermal
change, whose effect is given by (9).

A variational test for stability may be obtained directly from (27),

following the method of Dyson (1961) for the Newtonian case. The equation

o |0 am| |, () |poar( 1 Ry, 2 B,
aa | (3, an Yzl | T a8 ¥ _

with the boundary conditions g/@ finite at R = O and g finite at P = 0

'is a Sturm-Liocuville problem with a lowest eigenvalue ¥y = 7oe It is easy

0 verify that & necessary and sufficient condition that (21), equivalent
to (27), be positive definite is that 7, > 4/3. A variational estimate -

of 7;,’ can be obtained from the fact that 7 is the minimum over all g of
I.p 2 2 2
& (45 (P+E) (& &Y ., _L1RY'y 21 PR} (&
However, the direct variational estimate of 0002 obtained from (18) (see

Chandrasekhar (1964b)) is in most cases easier to evaluate accurately

numerically.

V. CONCLUSION.
Except for the appearance of the gravitational red-shift factor Yz,

which is Just a detail in the argument relating binding energy to stability,
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the results of this paper are arrived atv in the seme way as they might be
classically. This emphasizes {rha.t a great simplification spherical
symmétry is in general relativity.

The author would like to acknowledge stimu;'l.a.ting discussions with
Professor William A, Fowler and Professor Richard P. Feynman. The numerical
calculations were done on the IBM 7094 computer at the California Institute

of Technology.
-



-

REFERENCES

Chandrasekhar, S. 196ka, Phys. Rev. Letters 12, 11k, correction p. 3%37.

Chandrasekhar, S. 1964b, Ap. J. 140, k17,

Dyson, F. J. 1961, "Hydrostatic Instability of a Star", unpublished manuscript.

Fowler, W. A. 1964, private commmigaﬁon. "

Tven, Icko 1563, Ap. J. 138, 1090. |

Ledoux, P, and Walraven, Th. 1958, Handbuch der. Phyeik, Vol. LI, k58,

Misner, C. W. and Sharp, D. H. 1964, Phys. Rev. 136, BSTL.

Misner, C. W. and Sharp, D. H. 1965, Proceedings of Second Texas Symposium
on Relativistic Astrophysics (University of Chicago Press, Chicago),
£0 be published.

Misner, C. W. and Zapolsky, H. S. 196%, Phys. Rev. Letters 12, 635.

Taub, A. H. 1965, Proceedings of Second Texas Symposium on Relativistic

| Astrophysics (University of Chicago Press, Chicago), to be published.
Tooper, R. F. 1964a, Ap. J. 140, 43k,

Tooper, R. F. 1964b, Ap. J. 140, 811.

Wheeler, J. A. 1963, in Chiu and Hoffman, Gravitation and Relativity

(W. A, Benjemin, Inc., New York), p. 195,

Wright, J. P. 1964, Pnys. Rev. 136, B268.



-15-

FIGURE CAPTION

Figure l: The fractional binding energy is plotted against the surface
value of 2M/R, or 2a/c?R in ordinary units, for a sequence
of isentropic models with T = 2 (see text). The central value

of PV ranges from 0.1 at 2W/R = 0.25 up to 250 at'the last
] .
point plotted. The first maximum of the binding energy is at

(Pv)c = 0.320, the first minimum at (1='v)c = 5.07, and the

second maximum at .(Pv)c = 30, -
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